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Summary 

Fp’H (2, Fp’ = C,(CH3)5Fe(C0)2) reduces Fp’(CO)+PF6- (1) to Fp’CH20H (4) 
and further to Fp’CHB (6) and gives Fp’(THF)‘PF, (6) which, under CO recycles 
the active complex 1; H4Mo(dppe)2 reduces 1 to Fp; and 4, consistent with 
the abilities of the Lewis acids to bind the formyl intermediate (BH3 > 
HJMo(dppe)z’ > Fp”). 

The well-recognized organometallic mechanisms for homogeneous catalytic 
CO activation involve CO insertion into metal-alkyl or metal-hydrogen bonds 
[l]; yet intermolecular reduction of coordinated CO by anionic main group 
hydrides has been shown to give formyl, hydroxymethyl and methyl complexes 
with rhenium [ 21; and more recently with iron [ 3,4]. Since clear evidence for 
true intramolecular insertion of CO into metal-hydrogen bonds in mononuclear 
complexes under ambient conditions is very rare [ 51, the feasibility of inter- 
molecular paths for the reduction of CO by transition metal hydrides must be 
considered [ 61. Accordingly we now report the reduction of [ &Me,Fe( CO) 3]+- 
PF6- (1) by the neutral transition metal hydrides &Me,Fe(CO)*H (2) and 
HaMo(PPhzCH&HzPPh2)a, (3) [ 71. Recently, we found that NaBH4 reduces 1 to 
CSMeSFe(CO),CH20H (4), CSMe,Fe(CO)&H, (5), or CSMeSFe(C0)2H (2) de- 
pending on the solvent 141. It is now of interest to compare the reductions by 
main-group and transition metal hydrides. 

1 (1 mmol) reacts with 2 (1 mmol) in THF (10 ml) at 20°C (12 h) to give the 
hydroxymethy14 complex (10% vs. 1) which further gives the methyl complex 5 
(10% vs. 1); 2 (70% vs. 1) and [(CSMe5Fe(CO)z(THF)] PF6 (6) (65% isolated vs. 
2) [ 81 (Scheme 1). Given this preliminary result, we set up a system aimed at re- 
ducing CO directly using the iron hydride complex 2 as the hydride source. 
(Fp’THF)+ serves as the source of Fp’+, the function of which is to transport 
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and activate CO; the cycle is represented in Scheme 2. At 40°C under 1.2 bar of 
CO and after 2 days, only 150% of CO per mol (Fp’THF)+ is reduced to 
Fp’CH20H and Fp’CH3 using a ratio Fp’H/Fp’THF = 10 (30% of Fp’H is con- 
sumed). At 20°C under 1.2 bar of CO and after 10 days, 240% of CO per mol 
(Fp’THF)+ is reduced to Fp’CH, (Fp’CH,OH, being moderately stable, is now 
absent) using a ratio Fp’H/Fp’THF = 100 (80% of Fp’H is consumed). We believe 
that these poor turnover numbers are due to the decomposition of the inter- 
mediate formyl complex, Fp’CHO, to Fp’H and CO (e.g. the formation of the 
intermediate formyl complex is probably reversible). The molybdenum hydride 
complex 3 [ 71 (1 mmol) reacts with 1 (1 mmol), (12 h, 20°C) giving equal 
amounts of 4 (15%) and (C5Me,Fe(C0)2}2, 7 [9] (15%) (only 30% of 1 is con- 
sumed)(eq. 1). This latter product presumably results from electron transfer 

H,Mo(dppe), (3) 
F;CO+PF,- . FI;CH,OH + F& 

2O’C , 12 h 
(1 ) 

(1) (4) (7) 

from 3 to 1, a situation for which precedents exist [lo]. It is also worth noting 
that no product arising from the decomposition of the intermediate formyl com- 
plex, C,Me,Fe(CO)&HO, is found, in contrast to the case of the iron hydride 2. 
Thus, the extent of the reduction of 1 in THF by the B, MO and Fe hydrides 
(which proceeds to the methyl complex 5 with NaBH4) is clearly related to the 
decreasing ability of BH3, H,Mo(dppe),+ and C5Me5Fe(CO)p+ (respectively) to 
behave as Lewis acids toward the coordinated CO and, more specifically, the 
intermediate formyl complex. The important effect of the strength of the Lewis 
acid-carbonyl bond has already been revealed by the solvent dependence of the 
nature of the CO reduction products [ 2,4]. 
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